IH - Internl Hex

Spiral

The Original Spiral Implant
About Alpha-Bio Tec.

For over 25 years Alpha-Bio Tec has been a leader in developing, manufacturing and marketing implants, prosthetics parts, biomaterials and a variety of dental surgical instrumentation. Alpha-Bio Tec believes in making implantology simple, while manufacturing the highest quality products for the global market and providing customers with the best service possible. - Simplantology

Originality and Innovation

After the Spiral was launched, the uniquely shaped Spiral Implant was met with suspicion. Today, more than 10 years after, the Spiral is the most widely used implant of Alpha-Bio Tec and has become a role model in the implantology market.

The Spiral is a tapered internal hex implant with a unique combination of design features that enable easy insertion and very high initial stability. The unique shape of the implant body and its variable thread design (double thread 2x2.4 mm) equip it with some exceptional abilities such as the ability to change direction during placement and a notable success rate.

Implant surface process:
- Sand-blasting to create a macro surface of 20-40 microns
- Double thermal acid etching process to create micro pitting between 1-5 microns

NanoTec™ implant surface process advantages:
- Increased early BIC (Bone to Implant Contact)
- High long-term BIC
- Accelerated and improved Osseointegration process
- Increased secondary stability
- Shortened healing period
- Higher predictability

* References: Light microscopy photography of non-decalcified histology staining toluidin blue. Tibia of New Zealand rabbits. The study of Dr. Omer Cohen and Prof. Ofer Moses, Tel-Aviv University. Histology performed in laboratory of Prof. Dr. Dr. Daniel Rothamel, University of Cologne, 2014.

* The number of micro rings may vary between different implant diameters and/or lengths. Note: The illustration shows Spiral implant Ø3.75 / 13 mm.
Clinical Advantages

- Bone condensing properties, highest primary stability
- Enables the changing of direction for optimal restorative position
- Enables narrow osteotomy, which results in minimal bone loss and reduced trauma
- Enables narrow ridge expansion
- Reduces the risk of damaging adjacent teeth
- Reduces the risk of perforating the lingual or buccal cortex

Minor Changes in Parallelism

The unique self-drilling capability of the Spiral implant makes it possible to change the direction of the implant during placement. This helps to achieve parallelism between implants and to optimize implant placement. The below images demonstrate how to perform redirection during implantation of Spiral.

STABILIZATION IN SOFT BONE
Using Spiral ø3.75/L13

1. Drill according to the suggested protocol
2. Insert the implant
3. Change the orientation of the implant while inserting it
4. Continue the insertion until the implant is fully positioned

STABILIZATION AFTER EXTRACTION
Using Spiral ø3.75/L13

5. Drill using the 2mm drill
6. Drill using the 2.8mm drill
7. Insert the implant into the prepared site until it achieves sufficient retention and stability
8. Drill 2-3mm apically to the extraction socket and continue drilling according to the drill protocol
9. Insert the implant into the prepared site
10. Continue inserting the implant to the final depth. Bone augmentation may be followed if needed
11. Place the cover screw and suture

The Spiral unique thread design and apical part leads to high primary stability, thus making the implant suitable for soft bone, narrow ridges and following tooth extraction.

Initial Stability in Soft bone and After Extraction

Drill using the 2mm drill
Drill using the 2.8mm drill
Insert the implant into the prepared site until it achieves sufficient retention and stability
Drill 2-3mm apically to the extraction socket and continue drilling according to the drill protocol
Insert the implant into the prepared site
Continue inserting the implant to the final depth. Bone augmentation may be followed if needed
Place the cover screw and suture
Ordering Information and Dimensions

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Length</th>
<th>Ref. No.</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 3.3</td>
<td>8 mm</td>
<td>1306</td>
<td>Ø 3.7</td>
<td>Ø 1.55</td>
<td>Ø 1.55</td>
<td>Ø 3.5</td>
</tr>
<tr>
<td></td>
<td>10 mm</td>
<td>1300</td>
<td>Ø 3.7</td>
<td>Ø 1.55</td>
<td>Ø 1.55</td>
<td>Ø 3.5</td>
</tr>
<tr>
<td></td>
<td>11.5 mm</td>
<td>1301</td>
<td>Ø 3.7</td>
<td>Ø 1.55</td>
<td>Ø 1.55</td>
<td>Ø 3.5</td>
</tr>
<tr>
<td></td>
<td>13 mm</td>
<td>1303</td>
<td>Ø 3.7</td>
<td>Ø 1.55</td>
<td>Ø 1.55</td>
<td>Ø 3.5</td>
</tr>
<tr>
<td></td>
<td>16 mm</td>
<td>1306</td>
<td>Ø 3.7</td>
<td>Ø 1.55</td>
<td>Ø 1.55</td>
<td>Ø 3.5</td>
</tr>
<tr>
<td>Ø 3.75</td>
<td>8 mm</td>
<td>1358</td>
<td>Ø 3.85</td>
<td>Ø 2.9</td>
<td>Ø 2</td>
<td>Ø 3.5</td>
</tr>
<tr>
<td></td>
<td>10 mm</td>
<td>1350</td>
<td>Ø 3.85</td>
<td>Ø 2.9</td>
<td>Ø 2</td>
<td>Ø 3.5</td>
</tr>
<tr>
<td></td>
<td>11.5 mm</td>
<td>1351</td>
<td>Ø 3.85</td>
<td>Ø 2.9</td>
<td>Ø 2</td>
<td>Ø 3.5</td>
</tr>
<tr>
<td></td>
<td>13 mm</td>
<td>1353</td>
<td>Ø 3.85</td>
<td>Ø 2.9</td>
<td>Ø 2</td>
<td>Ø 3.5</td>
</tr>
<tr>
<td></td>
<td>16 mm</td>
<td>1356</td>
<td>Ø 3.85</td>
<td>Ø 2.9</td>
<td>Ø 2</td>
<td>Ø 3.5</td>
</tr>
<tr>
<td>Ø 4.2</td>
<td>8 mm</td>
<td>1368</td>
<td>Ø 5.95</td>
<td>Ø 4.6</td>
<td>Ø 3.35</td>
<td>Ø 3.85</td>
</tr>
<tr>
<td></td>
<td>10 mm</td>
<td>1360</td>
<td>Ø 5.95</td>
<td>Ø 4.6</td>
<td>Ø 3.35</td>
<td>Ø 3.85</td>
</tr>
<tr>
<td></td>
<td>11.5 mm</td>
<td>1361</td>
<td>Ø 5.95</td>
<td>Ø 4.6</td>
<td>Ø 3.35</td>
<td>Ø 3.85</td>
</tr>
<tr>
<td></td>
<td>13 mm</td>
<td>1363</td>
<td>Ø 5.95</td>
<td>Ø 4.6</td>
<td>Ø 3.35</td>
<td>Ø 3.85</td>
</tr>
</tbody>
</table>

Drill Protocol

Straight Drilling Sequence

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Soft bone Type IV</th>
<th>Medium Bone Type II&III</th>
<th>Hard Bone Type I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 3.3</td>
<td>2.0</td>
<td>2.8</td>
<td>2.0</td>
</tr>
<tr>
<td>Ø 3.75</td>
<td>2.0</td>
<td>2.8</td>
<td>2.0 3.6 Cortical</td>
</tr>
<tr>
<td>Ø 4.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0 3.65 Cortical</td>
</tr>
<tr>
<td>Ø 5.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0 3.65 Cortical</td>
</tr>
<tr>
<td>Ø 6.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0 3.65 Cortical</td>
</tr>
</tbody>
</table>

- Achieves very high primary stability
- Enables the changing of direction during placement
- Can penetrate smaller diameter prepared sites
- Ideal for immediate loading and immediate implantation
- Ideal for soft bone

Spiral – Why?

- Achieves very high primary stability
- Enables the changing of direction during placement
- Can penetrate smaller diameter prepared sites
- Ideal for immediate loading and immediate implantation
- Ideal for soft bone
Alpha-Bio Tec’s products are cleared for marketing in the USA* and are CE-marked in accordance with the Council Directive 93/42/EEC. Alpha-Bio Tec complies with EN ISO 13485:2016. Product availability may vary between countries.

Check our website www.alpha-bio.net for the most updated brochure version